Sl.No.

Total No. of Pages: 2

II Semester I Year B.Sc. Examination, July/August - 2023 (Semester Scheme) (NEP)

MATHEMATICS

Algebra - H and Calculus - H (Paper-H) (DSC)

Time: 21/2 Hours

Max. Marks: 60

Instructions:

- 1) Answer all the questions.
- 2) All the questions carry equal marks.
- 1. Answer any three of the following:

 $[3\times 5=15]$

- a) Find the number of positive divisors and sum of positive divisors of the composite number 960.
- b) Find the G.C.D. of 222 and 469. Also express G.C.D. as a linear combination of the given numbers.
- c) Solve the simultaneous congruences $x \equiv 2 \pmod{3}$ and $x \equiv 3 \pmod{5}$.
- i) Find the least non-negative remainder when 3200 is divided by 5
 - ii) Find ϕ (1155)
- e) State and prove Euler's theorem.
- 2. Answer any three of the following:

 $[3\times 5=15]$

- a) Show that $f(x) = \begin{cases} x^2 + 2, & \text{when } x > 1 \\ 2x + 1, & \text{when } x = 1 \text{ is continuous at } x = 1. \\ 3, & \text{when } x < 1 \end{cases}$
- b; Examine the differentiability of the function

$$f(x) = \begin{cases} x^2, & \text{if } x \le 3\\ 6x - 9, & \text{if } x > 3 \text{ at } x = 3 \end{cases}$$

d) Expand log (1 + sin x) up to the term containing x4 using Maclaurin's expansion.

e) Evaluate
$$\lim_{x\to 0} \left[\cot x - \frac{1}{x}\right]$$

3. Answer any three of the following:

$$[3 \times 5 = 15]$$

a) If
$$u(x,y) = \sin^{-1} \left[\frac{x^3 - y^3}{x + y} \right]$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$.

b) If
$$z = x^2 + y^{-2}$$
, $x = e' \cos t$, $y = 1 + \log t$, find $\frac{dz}{dt}$.

- c) Find the second Taylor polynomial of $f(x,y) = \log(1+x+y)$ at x = y = 0.
- d) If $x = r \cos \theta$, $y = r \sin \theta$, find J and J' and also verify JJ' = 1.
- e) Test for maximum and minimum of $z = f(x,y) = x^3 + y^3 3xy$.
- 4. Answer any three of the following;

$$[3\times 5=15]$$

- a) Evaluate $\int_{c} (x^2 y) dx + (y^2 + x) dy$ where $c: x = 1, y = 1^2 + 1$ and $0 \le t \le 1$.
- b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dx dy$ by changing the order of integration.
- c) Find the area of the surface $z = \sqrt{x^2 + y^2}, \frac{1}{16} < x^2 + y^2 < \frac{1}{4}$
- d) Evaluate $\iiint_D xy^2z^3dxdydz$ where D is given by 0 < x < 10, 0 < y < 1, 0 < z < 1.
- e) Find the volume of tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.

