Sl. No.

Total No. of Pages: 4

VI Semester III B.Sc. Examination, July/August - 2023 (Semester Scheme) (CBCS)

MATHEMATICS

DSE: Algebra - IV and Complex Analysis - I

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Answer all the five questions.

- 2) First question carries 20 marks remaining questions carry 15 marks.
- 1. Answer any Ten questions. Each question carries two marks:
 - a) In any vector space V(F), Prove that $C(\alpha \beta) = C\alpha C\beta$ for all $C \in F$, α , $\beta \in V$.
 - b) Show that the vectors (a_1, a_2) and (b_1, b_2) in $V_2(F)$ are linearly dependent if any only if $a_1b_2 a_2b_1 = 0$.
 - Determine whether $S = \{(x, y, z) \mid x = 0 \text{ or } y = 0\}$ is a subspace of $V_3(R)$ or not.
 - d) Is the transformation $T: V_2(R) \rightarrow V_2(R)$ defined by T(x, y) = (x+2, y+3) linear? Justify.
 - e) Find $T^2(x, y)$ of the linear transformation $T: V_2(R) \to V_2(R)$ defined by T(x, y) = (-x, y).
 - f) Find the matrix of linear transformation T(x, y, z) = (-x + y + z, x + y z)w.r.t. standard bases.
 - g) Find the modulus-argument of $\sqrt{3} i$.
 - h) Evaluate $\lim_{z \to e^{i\pi/4}} \frac{z^2}{z^4 + z + 1}$

- i) Show that the function $f(z) = e^{z}$ is analytic, where z = x + iy.
- j) Define cross ratio of four points.
- k) Find the Jacobian of the transformation w = (x + y) + i(x y).
- 1) Find the fixed points of the transformation $w = \frac{3z-4}{z}$.
- 2. Answer any three questions. Each question carries five marks:
 - a) Show that the set of ordered pair of real numbers is a vector space over the field of real numbers.
 - b) If S and T are any two subspaces of a finite dimensional vector space then prove that $d[S] + d[T] = d[S+T] + d[S\cap T]$.
 - c) Construct an addition table for $V_2(z_2)$ and list all its subspaces.
 - d) Find the basis and dimension of the subspace spanned by the vectors (2, 4, 2), (1, -1, 0) and (0, 3, 1).
- e) If n vectors spans a vector space V containing r linearly independent vectors then prove that $n \ge r$.
- 3. Answer any three questions. Each question carries five marks:
 - a) Find a linear transformation $T: V_2(R) \rightarrow V_2(R) \text{ such that } T(2, 1) = (3, 4) \text{ and } T(-3, 4) = (0, 5).$
 - b) Find the matrix of a linear transformation $T: V_2(R) \rightarrow V_3(R)$ defined by T(x, y) = (-x + 2y, y, -3x + 3y) relative to the bases $B_1 = \{(1, 1), (-1, 1)\}$ and $B_2 = \{(1, 1, 1), (1, -1, 1), (0, 0, 1)\}$.
 - c) Find the range, kernel, rank and nullity of the linear transformation $T: V_2(R) \rightarrow V_3(R)$ defined by T(x, y) = (x, x+y, y).

d) Find the inverse of the matrix

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
 using linear transformation.

- e) Find the eigen values and eigen vectors of the linear transformation $T: V_2(R) \rightarrow V_2(R)$ defined by T(x, y) = (3x + 3y, x + 5y).
- 4. Answer any three questions. Each question carries five marks:
 - a) Derive the equation of a straight line in complex form and hence express 3x + 4y = 5 in complex form.
 - b) Find the equation of a circle passing through the points 1 + i, 1 i and 2.
 - c) Find the derivative of $f(z) = \frac{2z+1}{2z-1}$ at z = a using definition of derivative.
 - d) Find the analytic function whose real part is $x^2 y^2 c$.
 - e) Define harmonic function. Prove that the real and imaginary parts of an analytic function are harmonic.
- 5. Answer any three questions. Each question carries five marks:
 - a) Prove that a bilinear transformation establishes a one-one correspondence from the extended z-plane to extended w-plane.
 - b) Prove that $w = \frac{i(z-i)}{z+i}$ maps the upper half of the z-plane into the interior of the unit circle in the w-plane.

- c) Find a bilinear transformation which maps the points (-1, -i, -1) onto (1, 0, i).
- d) Discuss the transformation $w = \cos z$.
- e) Express the bilinear transformation $w = \frac{3z+2}{4z+3}$ as a resultant of translation, rotation, magnification and inversion.

https://www.uomonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षेजे और 10 रुपये पायें, Paytm or Google Pay से