Sl.No.

Total No. of Pages: 2

VI Semester III Year B.Sc. Examination, July/August - 2023 (Semester Scheme) (CBCS)

MATHEMATICS

Complex Analysis - II and Improper Integrals (SEC)

Time: 2 Hours

Max. Marks: 40

Instructions: 1) Answer all the questions.

- 2) First question carries 10 marks and remaining questions carry 15 marks.
- 1. Answer any five questions. Each question carries two marks.
 - a) Evaluate $\int_C (x+2y)dx + (3y-x)dy$ along the curve $y = x^2$ from (0,0) to (1,1).
 - b) Evaluate $\int_{C} (\overline{z})^2 dz$ where C is the circle |z| = 1.
 - c) Evaluate $\int_{C} \frac{\sin 3z}{z \pi/2} dz$ where C is the circle |z| = 5.
 - d) State Cauchy's inequality.
 - e) Prove that $\int_{0}^{1} \left[\log \left(\frac{1}{y} \right) \right]^{n-1} dy = \Gamma(n).$
 - f) Evaluate $\int_{0}^{\infty} x^{3}e^{-x}dx$.
 - g) Evaluate $\beta(3, 5)$.
 - h) Prove that $\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \sqrt{2}\pi$ using duplication formula.

93709 MP-466

Answer any three questions. Each question carries five marks.

a) Evaluate
$$\int_{(0,3)}^{(2,4)} [(2y+x^2)dx + (3x-y)dy]$$
 along the curve $x = 2t$ and $y = t^2 + 3$.

- b) If f(z) is analytic over a simply connected region R and z = a, z = b are two points in R, then show that $\int_{a}^{b} f(z)dz$ is always independent of the path joining the points a and b.
- c) Evaluate $\oint_C \frac{z^2 4}{z(z^2 + 9)} dz$ where C is the circle |z| = 1.
- d) Evaluate $\oint \frac{(z-3)}{(z+1)^2(z+2)} dz$ where C is the circle |z| = 1.
- e) State and prove Liouville's theorem.
- Answer any three questions. Each question carries five marks.

a) Evaluate
$$\int_0^1 \frac{dx}{\sqrt{x \log(\frac{1}{x})}}$$
.

b) Show that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

Prove that
$$n\beta(m+1,n) = m\beta(m,n+1)$$
.

d) Prove that
$$\beta(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$
.

Show that
$$\int_0^{\pi/2} \sqrt{\cos \theta} \, d\theta \int_0^{\pi/2} \frac{1}{\sqrt{\cos \theta}} \, d\theta = \pi$$

