SI.No.

Total No. of Pages: 3

VI Semester B.Sc. Examination, April/May - 2018 (Semester Scheme) MATHEMATICS (Paper - VII) (2015-16 Batch and onwards) Algebra IV and Calculus III

Time: 3 Hours

Max. Marks: 80

Instructions:

Answer all the sections.

SECTION - A

- I. Answer any eight questions. Each question carries two marks.
 - a) Prove that the vectors (1,2,3), (1,1,1) and (0,1,0) are linearly independent.
 - b) Express (1,7,-4) as a linear combination of (1,-3,2) and (2,-1,1) in $V_3(R)$.
 - c) Determine whether $S = \{(x, y, z) / x, y, z \in R, x = y = z\}$ is a subspace of $V_3(R)$
 - d) Discuss the linearity of $T: R \to R^2$ defined by T(x) = (x+1, x+5).
 - e) Find the matrix of the linear transformation T(x,y,z) = (-x+y+z, x-y+z)where $T: V_3(R) \rightarrow V_2(R)$.
 - f) Find $T^2(x, y)$ of $T: V_2(R) \rightarrow V_2(R)$ defined by T(x, y) = (x, x-y)
 - g) Prove that $\Gamma(n+1) = n\Gamma(n)$
 - h) Prove that $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$
 - i) Find $\int_{0}^{1} x^{2} (1-x)^{3} dx$ using Beta function.
 - j) If $\phi = \log (x^2 + y^2 + z^2)$ then find $\Delta \phi$ at (1,1,1).
 - k) Show that the vector $(6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational
 - I) If $\vec{F} = x^2 y \hat{i} + 2xyz \hat{j} + y^2 z \hat{k}$ find $div\vec{F}$

SECTION - B

- II. Answer any eight questions. Each question carries four marks.
 - a) Show that the set $Q(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in Q\}$ is a vector space over Q under the operations usual addition and scalar multiplication
 - Show that the set {(1,1,0), (1,0,1), (0,1,1)} forms a basis of the vector space V₃(R).
 - c) Show that any two bases of a finite dimensional vector space V have the same finite number of vectors.
 - d) Construct the addition table for V₂(Z₂) and list all its subspaces.
 - e) If 'n' vectors spans a vector space V containing 'r' linearly independent vectors in V, then prove that n ≥ r
 - f) Show that $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x,y,z) = (x+z, x+y+z) is a linear transformation. https://www.uomonline.com
 - g) Find a linear transformation $T:V_2(R) \rightarrow V_2(R)$ such that T(2,1) = (3,4), T(-3,4) = (0,5).
 - h) Find the range, rank, kernel, null space of the linear transformation $T: V_2(R) \rightarrow V_3(R)$ defined by T(x,y) = (x-y,y, x+y)
 - i) Prove that every vector space V over F of dimension n is isomorphic to $V_n(R)$.
 - j) Show that the linear map T:V₃(R) → V₃(R) defined by
 T(c₁) = c₁+c₂, T(c₂) = c₂+c₃, T(c₃) = c₁+c₂+c₃ is non singular and find its inverse.

SECTION - C

- III. Answer any eight questions. Each question carries four marks.
 - a) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

b) Evaluate
$$\int_{0}^{1} x^{5} (1-x^{3})^{10} dx$$

c) Show that
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta \times \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta = \pi$$

d) Show that
$$\int_{0}^{\infty} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = 2\beta(m,n)$$

e) Prove that
$$\frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+1)} = \frac{1.3.5...(2n-1)}{2.4.6.....2n} \sqrt{\pi}$$

- f) Find the directional derivative of the function $\phi = x^2y + y^2z xyz$ at the point (2,-4,6) in the direction of the vector $\vec{a} = 3\hat{i} + 2\hat{j} \hat{k}$.
- g) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ show that div $[f(r)\vec{r}] = rf^{1}(r) + 3f(r)$

h) If
$$\vec{f} = xyz \hat{j}$$
 and $\vec{g} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ find

i) div
$$(\vec{f} \times \vec{g})$$

ii)
$$\triangle div(\vec{f} \times \vec{g})$$

- i) If ϕ is a scalar function and \vec{A} is a vector function then prove that $\operatorname{div}\left(\phi\vec{A}\right) = \operatorname{grad}\,\phi.\vec{A} + \phi(\operatorname{div}\vec{A})$
- j) Verify Green's theorem for the function $P = xy + y^2$, $Q = x^2$ over the closed curve C of the region bounded by $y = x^2$ and y = x.

https://www.uomonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से