Sl.No.

Total No. of Pages: 3

VI Semester B.Sc. Examination, April/May - 2019 (Semester Scheme) (2015 - 16 Batch and Onwards) MATHEMATICS (Paper - VII) Algebra IV & Calculus III

Time: 3 Hours

Max. Marks: 80

Instruction: Answer all the sections.

SECTION - A

- Answer any eight questions. Each question carries two marks.
 - a) In a vector space V over the field F, if α , $\beta \in V$ and $a \neq 0 \in F$. Then show that $a\alpha = a\beta \Rightarrow \alpha = \beta$.
 - b) Prove that the set $\{(1, 2, 1), (-1, 1, 0), (5, -1, 2)\}$ of vectors is a basis of $V_3(R)$.
 - c) Define direct sum of subspaces of a vector space.
 - d) If $T: V \to V$ is a linear transformation, then show that T(O) = O'.
 - e) Find the Eigen values of $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(1, 0) = (1, 2) and T(0, 1) = (4, 3).
 - f) Find $T^2(x, y, z)$ of the transformation $T: V_3(R) \to V_3(R)$ defined by T(x, y, z) = (z, -y, x).
 - g) Prove that $\Gamma(n+1) = n\Gamma n$.
 - h) Evaluate $\beta\left(\frac{1}{2}, \frac{3}{4}\right)$.
 - i) Evaluate $\int_0^\infty x^4 e^{-x} dx$ using Gamma function.
 - j) Find the divergence of the vector field $\overline{f} = x^2i + 3yj + z^3k$.

- k) Show that (x+4y)i+(2y-z)j+(x+y-3z)k is solenoidal.
- l) Prove that $curl(grad \phi) = 0$.

SECTION - B

- II. Answer any eight questions. Each question carries four marks.
 - a) Show that the set of all 2 × 2 matrices over the field of real numbers is a vector space.
 - b) If S and T are any two subspaces of a vector space V over the field F, then show that S + T is also a subspace of V over F.
 - c) In $V_3(z_3)$ how many vectors are spanned by (1, 2, 2) and (2, 1, 1).
 - d) Find a basis and dimension of the subspace of V₃(R) spanned by the vectors (1, 1, 1), (1, 2, 3) and (-1, 0, 1).
 - e) Prove that $\dim\left(\frac{V}{W}\right) = \dim(V) \dim(W)$ where W is a subspace of finite dimensional vector space V over the field F.
 - f) Show that $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x + z, x + y + z) is a linear transformation.
 - g) Find the matrix of the linear transformation T(1, 1) = (0, 1) and T(-1, 1) = (3, 2).
 - h) Find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1, 0, 0) = (-1, 0)T(0, 1, 0) = (1, 1), T(0, 0, 1) = (0, -1).
 - Show that the sum of two linear transformations is also linear.
 - j) Find the range, kernal, rank and nullity of the linear transformation whose

matrix is
$$\begin{bmatrix} 1 & 3 & 2 \\ -1 & 7 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

SECTION - C

- Answer any eight questions. Each question carries four marks.
 - a) For m > 0, n > 0 show that $\int_0^\infty \frac{x^{m-1} x^{n-1}}{(1+x)^{m+n}} dx = 0$.
 - b) Show that $\int_0^{\pi/2} \sin^m \theta \cos^n \theta d\theta = \frac{1}{2} \beta \left[\frac{m+1}{2}, \frac{n+1}{2} \right].$
 - c) Prove that $\beta(m,n) = \int_0^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$.
 - d) Evaluate $\int_{0}^{1} x^{3} (1-x^{2})^{\frac{5}{2}} dx$.
 - e) Prove that $\frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+1)} = \frac{1.3.5....(2n-1)}{2.4.6.....2n} \sqrt{\pi}$.
 - f) Show that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ where $r^2 = x^2 + y^2 + z^2$.
 - g) Find the directional derivative of the function $\phi = 4xz^3 3x^2y^2z$ at (2, -1, 2) along $2\hat{i} 3\hat{j} + 6\hat{k}$.
 - h) If $\vec{f} = x^2 y \hat{i} + y^2 z \hat{j} + z^2 x \hat{k}$ find $curl(curl \vec{f})$ at (1, 2, 1).
 - i) If \overline{f} and \overline{g} are two differentiable vector functions, then prove that $div(\overline{f} \times \overline{g}) = \overline{g}.curl \, \overline{f} \overline{f}.curl \, \overline{g}.$
 - j) Use Green's theorem, Evaluate $\int_{C}^{(xy-x^2)dx+x^2y\ dy}$ along the closed curve C formed by y=0, x=1, y=x.

