40243

_{SI.No.} 04657

Total No. of Pages: 3

VI Semester B.Sc. Examination, April/May - 2018
(Semester: Scheme)
MATHEMATICS (Paper - VIII)
Complex Analysis and Numerical Analysis
(2015-16 Batch and Onwards)

Time: 3 Hours Max. Marks: 80

Instruction: Answer all the sections.

SECTION - A

- Answer any eight questions. Each question carries two marks.
 - a) Find the equation of the line joining the points 2+3i and 1+2i.
 - b) If $f(z) = \sin z$. find f'(z) at z = i using the definition of derivative.
 - c) Prove that $f(z) = z^2$ is analytic.
 - d) Evaluate $\int_0^{1+i} (x^2 iy) dz$ along the curve y = x
 - e) Evaluate $\int_{C} \frac{1}{z-2} dz$ where C is the circle |z|=4
 - f) State fundamental theorem of Algebra.
 - g) Find an interval in which a real root of $x^3-x-4=0$ lies.
 - h) Use Newton Raphson method to find $\sqrt{17}$ correct to three decimal Places.
 - i) Solve $\frac{dy}{dx} = y x$, by Picard's method upto two approximations given y(0) = 1.
 - j) Prove that $(1 + \Delta)(1 \nabla) = 1$
 - k) Construct the forward difference table for $f(x) = x^3 + 1$ for x = 0 (1)5
 - 1) State simpson's 1/3 rd rule for 'n' intervals.

P.T.O.

M.S

SECTION - B

- II. Answer any eight questions. Each question carries four marks.
 - a) Define continuity of f (z) at $z = z_0$ and show that $f(z) = \frac{z^2}{z^4 + z^2}$ continuous at $z = e^{i\frac{\pi}{2}}$
 - b) Find whether the points (2,1), (3, 5), (-2,0) and (1,-1) are concyclic, not.
 - c) State and prove cauchy Riemann equations in polar form.
 - d) Find the analytic function f (z) whole real part is e^x cosy and find in imaginary part.
 - e) Prove that the function $u = x^3 3xy^2$ is harmonic and find its harmonic conjugate.
 - f) State and prove cauchy's integral formula.
 - g) Evaluate $\int (\overline{z})^2 dz$ around the circle |z-1| = 1.
 - h) Show that $\int_C \frac{z^2 4}{z(z^2 + 9)} dz = \frac{-8\pi i}{9}$ where 'C' is the circle |z| = 1
 - i) Evaluate $\int_{C} \frac{z \cos z}{(z \frac{\pi}{2})^2} dz$ where c is the cricle |z i| = 3.
 - j) State and prove cauchy's inequality.

SECTION - C

- III. Answer any eight questions. Each question carries four marks.
 - a) Find a real root of the equation $x^3 2x 5 = 0$ by Bisection method correct to three decimal places.
 - b) Find a real root of the equation $\cos x 3x + 1 = 0$ correct to three decimal places by the method of false position.

- Use modified Euler's method to solve $\frac{dy}{dx} = x y^2$, given that y(0) = 1 for x = 0.2 with h = 0.1
- d) Apply Runge Kutta fourth order method to solve

$$\frac{dy}{dx} = 2x - y$$
 with $y(0) = 1$, for $x = 0(0.5)1$

e) Estimate the population for the year 1995 from the given table.

Year	1960	1970	1980	1990	2000
Population	46	66	81	93	101
in crores					

f) Use Newton - Gregory formula to find a polynomial in x for the data.

x	0	1	2	3
f(x)	2	3	12	35

- g) Using Lagrange's interpolation formula find f(5) given that f(1) = 2, f(2) = 4, f(3) = 8 and f(7) = 128
- h) Derive general quadrature formula.
- i) Evaluate $\int_0^1 \frac{x}{1+x^4} dx$ with n= 4 using trapezoidal rule, hence find an approximate value of π .
- j) Evaluate $\int_{0}^{3} (x^4 + x) dx$ with n = 6 by using weddle's rule.

