SI. No.

Total No. of Pages: 3

VI Semester B.Sc. Examination, September - 2020 (Semester Scheme) (2015-16 Batch and onwards) MATHEMATICS (Paper-VIII) Complex Analysis and Numerical Analysis

Time: 3 Hours Max. Marks: 80

Instruction: Answer all the Sections.

SECTION - A

- I. Answer any eight questions. Each question carries two marks.
 - a) Find the equation of the Straight line passing through the points $z_1 = 2 + i$ and $z_2 = 3 2i$.
 - b) Find the region of the complex plane satisfying $|z+1-i| \le 3$.
 - c) Prove that $f(z) = \cos z$ is analysic.
 - d) Find $\int_{c} (z)^{2} dz$ where c is the circle |z|=1.
 - e) Evaluate $\int_{c}^{c} \frac{e^{z}}{z^{2}} dz$ where C is a circle |z|=1.
 - f) State fundamental theorem of Algebra.
 - g) Construct forward difference table for $f(x) = x^2 + 3x + 1$ for the values x = 0, 1, 2, 3, 4.
 - h) Evaluate $\Delta^9 (1-3x^2)(1-5x^3)(1-7x^4)$.
 - i) Show that $E = 1 + \Delta$.
 - j) Use Euler-Cauchy method to solve $\frac{dy}{dx} = x + y$, given y(0) = 1 for x = 0(0.1)0.2.

20764

M-3192

- k) State Lagarange's interpolation formula for unequal intervals.
- l) Evaluate $\int_{0}^{3} \frac{dx}{1+x}$ with n=3 using Trapezoidal rule.

SECTION - B

II. Answer any eight questions. Each question carries four marks.

- a) Show that $\arg\left(\frac{z-1}{z+1}\right) = \pi/3$ represents equation of a circle. Find its centre and radius.
- b) Evaluate $\lim_{z\to 1+i} \left\{ \frac{z^2-z+1-i}{z^2-2z+2} \right\}$.
- c) Find the derivative of $f(z) = \frac{2z-i}{z+2i}$ at z = -i using the definition of derivative.
- d) Derive Cauchy-Riemann equations in polar form.
- e) Find the analytic function whose real part is $x^2 y^2 y$ hence find the imaginary part.
- f) Evaluate $\int_{c}^{z} dz$, where c is the square whose sides are $x = \pm 1$, $y = \pm 1$, described in the positive direction.
- g) State and prove Cauchy's integral theorem.
- h) Evaluate $\int_{c}^{c} \frac{\sin^6 z}{\left(z \frac{\pi}{6}\right)^3} dz$, where C is the circle |z| = 1.
- i) Show that $\int_{c} \frac{z^2 4}{z(z^2 + 9)} dz = \frac{-8\pi i}{9}$ where C is the circle |z| = 1.
- j) State and prove Cauchy's inequality.

SECTION - C

III. Answer any eight questions. Each question carries four marks.

- a) Find a real root of $x^3 2x 5 = 0$ by bisection method correct to three decimal places.
- b) Find a real root of the equation $x^3 x 1 = 0$ correct to three decimal places by Newton Raphson method.
- c) Solve $\frac{dy}{dx} = x^2 + y^2$, y = 0 when x = 0 by Picard's method upto third approximation at x = 0.2.
- d) Using Runge-Kutta fourth order method solve $\frac{dy}{dx} = 1 + xy$, y(0) = 2 for x = 0.2, h = 0.1.
- e) Find the 10th term of the series 3,14, 39, 84, 155, 258
- f) Find y when x = 0.33 from the table by using Newton's Gregory formula.

1	x	0.30	0.40	0.50	0.60
l	у	0.6179	0.6554	0.6915	0.7257

- g) Prove that $\left(\frac{\Delta^2}{E}\right)e^x \frac{Ee^x}{\Delta^2e^x} = e^x$ where the interval of difference being unity.
- b) Derive the Simpson's 1/3rd Rule using General Quadrature formula for n intervals.
- i) Evaluate $\int_{0}^{6} \frac{dx}{x^2 + 4}$ by Weddle's rule with n = 6.
- j) Use Simpson's $3/8^{\frac{n}{2}}$ rule to obtain an approximate value of $\int_{0.2}^{1.4} e^{2x} dx$ with n = 6.

