SI.No.

Total No. of Pages: 3

VI Semester B.Sc. Examination, April/May - 2019 (Semester Scheme)

MATHEMATICS (Paper - VIII) (2015-16 Batch and Onwards) Complex Analysis and Numerical Analysis

Time: 3 Hours

Max. Marks: 80

Instruction: Answer all the sections.

SECTION - A

- I. Answer any eight questions. Each question carries two marks.
 - a) Evaluate $\lim_{Z\to 2} \frac{Z^3 2Z^2 + 2Z 4}{Z^2 3Z + 2}$.
 - b) Show that an analytic function with constant real part is constant.
 - c) Prove that $u = \log \sqrt{x^2 + y^2}$ is harmonic.
 - d). Evaluate \int_{C} Re (z) dZ, where C is the line joining Z = 0 and Z=1+i.
 - e) Evaluate $\int_{C} \frac{dZ}{Z+2}$, around the circle |Z| = 2.
 - f) State Cauchy's inequality.
 - g) Explain briefly the Bisection method of finding a real root of the equation f(x) = 0.
 - h) By using Newton-Raphson method find $\sqrt[3]{10}$ correct to three decimal places.
 - i) Solve $\frac{dy}{dx} = x + y$, given y(0) = 1 using Picard's method up to 3^{rd} approximation.
 - j) Construct the forward difference table from.

x	10	1	2	3	4
y	1	3	7	13	21

k) Evaluate

$$\Delta^{10} (1+3x)(1-9x^2)(1-6x^3)(1+5x^4)$$

1) State Simpson's $\frac{3}{8}$ th rule for *n* intervals.

SECTION - B

Answer any eight questions. Each question carries four marks.

- a) Find the equation of the circle passing through the points 1, i, and 1+i
- b) Find the derivative of $f(z) = \frac{Z-1}{Z+1}$ at 2-i using definition of derivative.
- Show that the real and imaginary parts of an analytic function are harmonic.
- d) If f(z) = u + iv is analytic and $u v = e^v [\cos y \sin y]$. Find f(z) in terms of z.
- e) If u and v are harmonic functions, show that $(u_v v_v) + i (u_x + v_y)$ is analytic.
- t) Evaluate $\int_{(0,0)}^{(2,x)} (2y-x^2) dy + (3x-y) dy \text{ along the curve } x = 2t \text{ , } y = t^2+3.$
- g) State and prove Cauchy's integral theorem.
- h) Evaluate $\int_{C} \frac{\cos(2 \prod Z)}{(2Z-1)(Z-3)} dz$, where C is the circle $|z| = \frac{1}{2}$.
- i) Evaluate $\int_{c}^{\infty} \frac{e^{-2z}}{(z+4)^{5}} dZ$, where c is the circle |Z| = 4.
- j) State and prove Liouville's theorem.

SECTION - C

III. Answer any eight questions. Each question carries four marks.

- a) Find a real root of the equation $x^3-5x+3=0$ correct to three decimal places using Bisection method. https://www.uomonline.com
- b) Find a real root of the equation $x^3-x-10 = 0$ correct to three decinal places by Regula-falsi method.
- c) Use Euler's modified method to compute y(0,4) for $x = 0(0.2)^{0.4}$ given that $\frac{dy}{dx} = 1 - 2xy$, y(0) = 0.

- d) Solve $\frac{dy}{dx} = y x$, given y(0) = 0, at x = 0.4 with h = 0.2 by Runge-Kutta fourth order method.
- e) Estimate f (2.5) from the given table by using forward interpolation formula,

х	1	2	3	4	5	6
f(x)	1	8	27	64	125	216

f) Express $\frac{3x^2+x+1}{(x-1)(x-2)(x-3)}$ as a sum of partial fractions by using Legrange's inter polation formula.

g) Using Newton - Gregory formula. Find a polynomial f(x) from the following table.

x	0	1	2	3
f(x)	1	2	4	7

- h) Derive Simpson's $\frac{1}{3}$ rd rule using general quadrature formula for n intervals.
- i) Evaluate $\int_0^1 \frac{dx}{1+x}$ by Trapezoidal rule with n = 5, Hence find an approximate value of log2.
- j) Find the value of $\int_0^{0.6} \frac{dx}{1+x^2}$ by using Weddle's rule with seven ordinates.

000